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A formulation is given of the problem of the stability of piston-flow motion in a traveling magnetic field.
It is shown that this question reduces to the problem of stability of motion in the presence of constantly
acting perturbing forces. The second Lyapunov method is used as the basis to present the sufficient
criteria for stability of the flow motion with respect to certain specified quantities.

Piston flow consists of liquid metal slugs (pistons) and the gaseous volumes (plugs) separating them. In reality
the pistons may be in the form of either an annulus (cylindrical flow) or a straight bar (plane flow).

In steady-state piston-flow motion the velocities of the external field and centers of inertia of the pistons are
equal. We study the stability of this motion for small perturbations of the distance between the pistons.

The system in question (Fig. 1) consists of two plane flows of limited width (the limiting case of an element of
cylindrical flows with width equal to the arc along the circumference of the channel). The flows are separated from one
another by a wall of thickness A and are shifted relative to one another by the distance 7 (the pistons are shown
hatched). The distance between the centers of inertia of neighboring pistons in each of the flows is 27. A direct current
flows through the pistons along the y-axis (in the upper pistons the currents are directed into the paper, in the lower
they are directed out of the paper). The external magnetic field, created by three-phase alternating current windings
(stators) located at the edges of ferromagnetic media bounding the flows from above and below, has the form of a
traveling wave of length 27 and travels in the x direction, as do the flows.
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1. In order to obtain simple dimensionless relations, we assume the common boundaries between the gas and the
piston to be plane, and the gas is considered to be an elastic medium. The first assumption is formally valid if the
relaxation time of the disturbed motions of the piston is considerably less than the characteristic time for breakdown
of the contact surface because of Rayleigh-Taylor instability; the second assumption means that the processes in the
gas are adiabatic and is known to be valid for processes such as compression and expansion in a sound wave.

Let us examine the motion of the center piston in Fig. 1. The equation of motion has the form (we use the SI
system of units)

M% —(P.—P)qg—F—F,. (1.1)
Here M is the mass of a piston of length I (dimension along the y-axis); u is the piston velocity in the laboratory
coordinate system x, y, z; P- and P, are, respectively, the pressures to the left and right of the piston; q is the

piston area in the yz plane; F; is the electromagnetic force; F, is the friction force between the piston and the channel
wall.

The equation of motion of the gas with account for the assumption on adiabaticity of the processes in the gas in
conventional notation has the form
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£ — const . (1.2)

3 8 .
oo =—gradp, S +4div(pv) =0, =

We set
< [+ o d&
P.=P°tp, F=F'+h u=w+2
P,=P°+p, Fo=Fl+tfs ug=u+o0 . (1.3)

Here we have introduced a simplificationbythe assumption that the gas motion is one~-dimensional (v = iug). The
basis for this is the fact that the contribution made by the acoustic pressure p., p;, as shown later, is insignificant.
For this same reason we ignore the change of the quantity q in (1.4).

In (1.3) the first terms relate to the steady-state motion of the piston and the second terms are the perturbations
of the corresponding quantities; $(t) is the piston displacement relative to its equilibrium position (by equilibrium we
mean the piston position in its steady-state motion). Thus, #(t) defines the piston position in the X, y, z coordinate
system fixed with the piston in its steady~-state motion (Fig. 2), 6(t,X) is the average (in the directed sense)
displacement of the gas molecules in the same X, y, z coordinate system.

Substituting (1.3) into (1.1) and (1.2), we obtain

a2
M—=(p_—p)0—fr— 2 (1.4)
2%0 %0
B ~ogzr =0- (1.5)
Here
— VRT _ % — _.pof 08 o .pof 99
o = V1RT,, v= o 0 P-=— TP (—rX )_L, p.=—1P, (—aX =

Let us evaluate the individual quantities appearing in (1.4).

To determine the electromagnetic force perturbation f; we examine the equations of the electrodynamic gystem
(Fig. 1) for small slips of the flows relative to the external magnetic field; here

where w is the circular frequency of the voltage applied to the stator winding.

We replace the system of two piston flows (Fig. 1) by a single-component flow with the electrical conductivity o
and the current j,
.. 2mz . .
6 =6, } 0y 8iR——COSAZ, [, =],C054T,
8 2nA AN .
Gy =7~0p, Op= %(COS—{;L—”FCOSE;L—), = %Cﬂp'

Here o, is the electrical conductivity of the piston, jp is the current density in the piston due to external
source, and c; is the coefficient of the first term of the Fourier series for the electrical conductivity curve.

The equations of electrodynamics can be written as

04 .
AA — pos 2 = — tolv
84

Fr Ly = T Fmisin (05t + 02— @1) & F, sin (03— 2)
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Fma =Ti‘nw;1, Fmg=TMOWI2, w =—T§£}x

o 0 i o .
— Upoxpl— ust] = 58 + L, 50 4 Po (b + L),

¥ =—jopwl S [4 <-g—>+A<—--Z—)]exp(]’°ax)dx.

Here A is the y-component of the vector potential; y is the magnetic permeability of vacuum; w, is the number
of turns in the stator winding phase; p is the number of stator field waves in the channel length; U, is the amplitude of
the stator voltage, I; and I, are, respectively, the stator current components due to the voltage Uy, exp(—j°wst) and
the current in the liquid; ¢, and ¢, are the phase angles between I and I for t = 0; Lg is the stator winding leakage
inductance; j° is the imaginary unit.

We set
A=5— Z;Vth’;;lh ch AzFp, exp [— j° (wst + o — @1)] +
+ Bl oxp [ (§—oe )] — 2?;,/1“:,7 chazFpm, exp [— J° (a2 — @3)],
A= Py =a L0+ (e + ) — Paf 1+ et —11}" (1.6)
Then
AS — p.ocs = f(¢, », z),
(¢, z, 2) = jPospg (6 — &) zzllh/;':h chAz Fr exp [— j° (a5t 4 ar —@)] »
%%_0 for z=i—;—h. {(L.7)

The quantity S satisfies the periodicity condition with respect to t and x. Therefore, bearing in mind (1.7) and
the structure of f(t,x, z), we set

i,

m
= D) amocos zmm 2 cos 2
[1]

where amg, bmp. and ey are complex numbers. Equation (1.8) satisfies the completeness condition and therefore it
must converge in the mean.

i P n COS (@SE-NAT) Cppp Sin (0SE+-n0T)] (1.8)

Let us utilize the idea of the Galerkin method. It is easy to see that
{ ¢ 2
S S S f(t, z, 2)pdtdedz =0 (C=~‘£'>.
0 —

where ¢ is any of the coordinate functions from (1.8). Thus, for the coefficients amp, bpns Gmp We obtain a system
of homogeneous algebraic equations., This indicates that these coefficients will be zero. Consequently, S = 0.

The actual magnitude of the vector potential is given by the imaginary part of (1.6), i.e., itis

A = Fm la(z)sin(@st + oz — ¢1) ——b(z)cos(co.st A on — ;)] +

2ch Yy ah i
4 KB chaz Py, sin (ac — o) + L3t cosaz .9
where
a(z) = qycosvzehrz— gysinvzshrz 2ch 1/, ARk

b(z) = gysinvzshrz + gzcosvzchrz, O+ 7" = A sb Ak

We further set (es)? « 1, h < 7 and obtain
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112*—[;;" ' [2:_%?_]1’ @y = — &, P =5~ (1.10)
where
_ 3.2f 14 chak
zg = oL; + R l(2w¢)2 Ro 537

We find the electromagnetic force acting on the piston from the relation

<t 4k
1 .
Fy=<f>2LI8, <>= 5y S S jB, dzdz
~1 —sh
A . A
I=agr —i Ba=5

Here (f) is the average value of the electromagnetic force density.

We have
) a6 o h Up g s
F1= FmSlnﬁc—-]—C’ﬁ-}—D-—dT, Fm—3T_ﬁ po_p_—h—Ll’
— _ Un\t poet 14chak 8
€ = Facosd,, D_(3w¢ x) e o 2Lk (1.11)

In (1.11) the first term corresponds to the steady-state regime. Thus, the perturbation of the electromagnetic
force is

h=Co+D2 (1.12)
The friction force on the wall is
s pu® L
Fi= 2 h

where ¢ is the friction coefficient, found from known formulas as a function of the Reynolds number. Hence we obtain
for the perturbation of the friction force

B
-3
[
™~

f2=X'at—. % = fou 9 (1.13)

Thus, for the formulation of (1.4) it remains to find the perturbations p~ and p;. These quantities depend on the
perturbed motion of the gas. Therefore we must examine (1.5).

Among the solutions which formally satisfy (1.5) we take that which will coincide with the solution of {1.4) for

X =+ L. Taking (1.12) and (1.13) into account, we can assume that this solution will have either periodic or aperiodic
nature for instantaneous perturbations. Therefore we write the solution of (1.5) in one of the following forms:

k 1
8; =057 + 8y = fus (@of — X — L) exp [a_o (oot — X — L)| +

+ fas (@ot + X + L) exp [ (agt + X + Ly)] ( (1.14)
(i=—, 4 L=—L_ =1),
0, = By 4+ 0y; = Ay; exp L’;_; (@ot — X — Li)] + Agiexp [Z—: (Aot — X — Li)]
d.
(4y; = const, Ay = const) . (1.15)

Here and hereafter the subscripts (—) and (+) denote, respectively, the regions to the left and right of the piston.

Let us examine (1.14). It implies that
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and further
o1 1tk ae,I
X |, = T Rya 7 L, (1.16)
Here Aj = const and in the general case A~ # Ay. Since
g =0,
where 4 is the piston displacement, we obtain
_ pdb _Ti4A pe A4Mopol T
(.—p)g=RY, R=[ii=rPc—iEprpc|Lg. (1.17)
Thus (1.4) can be written as
d2
ME2_ D% L co—0 (D.=R—D—). (1.18)
Hence we obtain
D iMC— D2
™=, u):———-—V s AMC> DS (1.19)

Here y! and w are the increment and the frequency of the piston oscillations for transient perturbations.

In (1.17) the quantity A;j is the ratio of the amplitude of the left-traveling wave to the amplitude of the right-
traveling wave at the edges of the piston being examined. Consequently the quantity A; must depend on the perturbed
motion of the neighboring (on the left and right) pistons. Two cases are formally possible: the neighboring pistons are
stationary, i.e., they have no displacement relative to the steady-state motion; the neighboring pistons perform the
same motion as that being examined but with a different amplitude. The second case is of interest. For this case,
we find from the conditions that the oscillations of the neighboring pistons match the sonic oscillation of the gas

Bi?—1
by = exp (= 27,/ ap) — 28, cos 0l / aoexp (= 1Y,/ a0) + B,
T, ol,
B;ch ﬁ—-cos—a;’=0- (1.20)
Here the upper sign applies to i = +, the lower sign applies to i = —. Thus, for given distances I~ and [+ between

the pistons (Fig. 1) we can obtain from (1.17), (1.19), and (1.20) all the necessary quantities characterizing the
oscillatory motions of the piston for transient perturbations. Numerical calculations of {1.17), (1.19), and (1.20) showed
that the contribution of the acoustic pressure Rd# At is small. For example, for C = 3.98-10° J-m™, Dg = 2.10° J-
.sec-m™%, P2 =250-10° N-m™%, P = 238-10° N-m™%, M = 91kg, ay =440 m.sec™, I- =, =0.75 m, q = 0.0375 m*
we have R = 40 kg- sec- m™. Thus the acoustic pressure must play a secondary role.

Aperiodic motions (1.15) of the piston are possible if De2 >4MC. In this case neighboring pistons perform the
same motions and the value of R is found from the formula

o o T
R=(P°—P,)2-q.
Simple estimates show that the role of the quantity R in this case is more prominent than for the case of piston
oscillations.

In (1.18) forces having the nature of constantly acting perturbations are not taken into account. Let us examine
the basic facts with which the existence of such forces is associated.
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The pistons which comprise the flow are coupled with one another. This coupling is provided by the gaseous
layers located between the pistons (acoustic pressure on the pistons) and by the electromagnetic field.

As shown previously, the acoustic pressure depends on the static pressures P2 and P3 acting on the pistons in
the steady-state flow motion, and in the case of oscillatory motions also on the distances I~ and I, between the pistons.
To ensure normal operation of the device the channel expands slightly along the length. Therefore, in the process of
piston motion along the channel these quantities change continuously. However, this change cannot have a stationary
nature. This is associated with the fact that the piston dimension along x is still significant (on the order of the length
of the stator field half-wave), while the piston dwell time in the channel is short {on the order of hundredths of a
second) and may be less than the relaxation time of the mechanical transitional processes (for the numerical values
presented above this time is on the order of 0.1 sec). Thus the change of the static gas pressure, associated with
useful piston work, must also be accompanied by the formation of acoustic waves and pressures. It is clear that this
pressure will have the nature of constantly acting perturbations and will be a function of t, ¢, and d#/dt.

The piston magnetic mutual-induction field depends on the piston dimensions and distances between them. As the
piston travels along the channel, as a result of channel expansion these quantities change continuously, which leads to
a change of the mutual-induction field. Moreover, the changes of this field and of the piston self-induction field are
associated with the finite channel length. Thus, among the forces acting on the piston there must appear additional
electromagnetic forces which have the nature of constantly acting perturbations which depend on t, ¢, and d¢/Alt.

To account for the constantly acting perturbations of both acoustic and electromagnetic origin, we must introduce
into (1.18) the term f(t, ¢#,d#/dt) and write

d®3 d { dd
M G5 —DeZg +C0 = /{1, 9, W). (1.21)

Analytic description of the function f({t, ¢,d$/dt) is hardly possible. However this situation is not of significant
importance, since in the following we need know only the upper limits of this function. In this formulation (1.21) is
valid for any of the pistons; therefore we term it the equation of the perturbed piston-flow motion,

2. Let us examine the problem of the stability of the piston-flow motion.

We replace (1.21) by a normal system of differential equations

a: d
—571 = au¥y + @19¥s + /1 (¢ Y1, Yo)s Ty:_ = anl: (2.1)

where
49 D c
Y= > Y =0, ‘111=‘3“1 e = — 31 agy =1, f1=%. (2.2

The unperturbed motion (y; = y; = 0) and the perturbed motion, due to the action of the instantaneous
perturbations for t = 0, are determined from (2.1) for f; = 0. For f; = 0 and nonzero initial conditions this same
system yields the perturbed motion in the presence of instantaneous and constantly acting perturbations.

Let us find the stability criterion for the motion (y; = y, = 0) on the time interval [0, T] (T is the piston stay
time in the channel) relative to the quantities

T A OR {719, 7. @)} . (2.3)

which are, respectively, the given upper bounds of the absolute values of the initial perturbations, the perturbing
force, and the subsequent perturbations. We use the second Lyapunov method [1-3] to solve this problem.

In accordance with this method we obtain the sufficient stability criteria on the basis of the upper estimate of
the Cauchy integral of the perturbed-motion equations (2.1), which requires the construction of a special positive

definite function V of y;, ys and study of this function together with (2.1)

We set
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V=4 expy (8) = (Aay:® + Apl,® + 241501y,) exp ¥ (1), Ap= A4, (2.4)

where v(t) is a function which is real on the interval [0,T] and we immediately assume that ¥(t) > 0. We shall see later
that this requirement does not make the other estimates invalid. The quantities Ay, Ajy, Ajy must satisfy the equation

. v v N
(@111 1 @13%9) Ty + Y15, = (s + wayS expr(f)

where w; and u, are arbitrary negative time functions.

Setting immediately

we find

anu: u i a
Ap=—-22 A, =2§%’" Ay =(a- 2a1:z1m>u’ . (2.5)

In order that (2.4) be a positive definite function it is sufficient that the Hurwitz conditions be satisfied for u; < 0,
—8yp8y >0, —a;;,>0.
The first condition, reducing to C >0 in accordance with (2.2), is satisfied automatically; the second yields
D,<0. (2.6)
By virtue of (2.1) the total derivative of the function V for f; = 0 is
V=B exp y(t) = Bu¥s® + Balls® + 2B1g14s) exp ¥ (), Biy=By - ‘ (2.7)
Here

By = 'l.’Au“ % Uy By = "-(Au + Uy By, = ’i’Au . (2.8)

In obtaining (2.7) and (2.8) we assumed that u; = const. The derivative V will be a negative definite function if

i B By,
Bll<0! ‘Bz Bz: >0 .
Hence
|D,| _ - - My N __ DYy, My :
e >1>0 (1_1De]) 3C (1 2|De|)>0‘ (2.9)

If conditions (2.6) and (2.9) are satisfied, then the upper estimates Xy (0, t, ¥¢) of the absolute value | yi(t)| of the
Cauchy integral of (2.1) for f; = 0,

lun (O] <Xp O £, 50) <<gn(t) (=12 (2.10)

(where yp(t), ¥ (t) are, respectively, the Cauchy integrals for the initial conditions y, and yo{yy < yo)) can be found
from the formula [4]

M N\
X, = (A G ) expa(t, ) (=12 (2.11)
Here

A (o) = Andr® + Ase¥eo® + 2413710720 »
A, = Aquz - Amzs Ml = Azzv Mz =Ayn.
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P 0= ly(©) —y@)]. (2.12)
Thus we obtain

| " - D l . A ~/s .
X, = l<y102 + AsTe® + IMe yioyzo) —1] exp (—%Tmt) , (2.13)

2

~ _ | Dl _ i 14 .
X, = [(ym2 + A’ + ‘ML ymyzo) A_z] exp (—‘%‘Tmt) ,

De2 C -Dez [
A1=2M2 +"1Ti! Azz'lm_z‘l‘—ﬁ (2.14)

Here ¥, is the maximum value of ¥, found from condition (2.10).

So far we have assumed that f; = 0. For f; = 0, i.e., in the presence of constantly acting perturbing forces, the
criteria (2.6) and (2.9) remain valid. The only thing that needs be done is to account for the contribution of f; in the
formulas for the upper estimates of the Cauchy integrals of (2.10) and write in place of (2.10)

Yo, 8 7)<<vn () k=1, 2), (2.15)

where y(t) is the Cauchy integral of (2.1) for f; # 0 and yy. The quantity Yy, can be found from the formula [4]

g i
Ve=X+ 220 0 fi@dr (k=12 (2.16)
=10
. M. \Y: .
206, 7) = 5 1, ) exp(— - ft) = (4 g2) 050 (% Tt (2.17)
" A

Here Xy are given by (2.13) and (2.14), My and A are calculated from (2.12). We have
- 2 [, te N w3
Y1 - X1 —I- K [1 eXP (" ‘ZTmtﬂzl fl 4
= 21 —exp(—1¢ wg
Yo=X,+ i [1 eXP< 3 Tmt)] 2 i

z(ll) — A‘lsz;‘/z, z;l) - A-z-‘/z ) (2.18)
Here_ﬁ = const is the upper limit of the function f;(t, ¢, d¢$/Adt).

Thus the sufficient criteria for the stability of piston-flow motion in a traveling magnetic field on the interval
[0,T] relative to the prespecified quantities (2.3) are given by the conditions (2.6), (2.9), and (2.15), in which the upper
estimates are found from (2.13), (2.14), and (2.18).

The formulas (2.13), (2.14), and (2.18) for the upper estimates of the Cauchy integrals of the perturbed-motion
equation for instantaneous perturbations and in the presence of constantly acting perturbing forces contain the same
quantities (see (2.11), {2.17). These same quantities define the Lyapunov function V. Therefore, an idea of the quality
of these formulas and how successful the function V is constructed can be obtained, for example, by comparing the
results given by (2.13) and (2.14) with the exact solution of (2.1) for instantaneous perturbations. This can be done in
the problem in question here.

Figure 3 shows the results of calculations of y; and its estimates using (2.13) for the following conditions: Dg =

=2.10%J-sec-m™2, C = 3.98-10° J.m"%, M = 91 kg, P2 = 250+ 10° N-m™2, P3 = 238-10° N-m™2, gy = 440 m.sec™,
+

l.=1,=0.75m, g=0.0375 m%, y!' = — 10.34 sec™h,w = 65.32 sec”}, yp, = 18 sec™!, Jip = m-sec™?, ¥y = 0.05 m. The
quantities y! and w were calculated using (1.17), (1.19) and (1.20), and ¥y, was determined from conditions (2.9).

This comparison demonstrates the validity of the sufficient criteria obtained above for the stability of piston-
flow motion in a traveling magnetic field.
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