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A formulat ion is given of the problem of the stabil i ty of piston-flow motion in a t ravel ing magnetic  field. 
It is shown that this quest ion reduces  to the problem of s tabi l i ty  of motion in the p resence  of constantly 
acting per tu rb ing  forces.  The second Lyapunov method is  used as the basis  to p resen t  the sufficient 
c r i t e r i a  for s tabi l i ty  of the flow motion with respec t  to ce r ta in  specified quanti t ies .  

P is ton  flow cons is t s  of liquid meta l  slugs (pistons) and the gaseous volumes (plugs) separat ing them. In rea l i ty  
the pistons may be in the form of e i t h e r  an annulus (cyl indrical  flow) or a s t ra ight  bar  (plane flow). 

In s teady-s ta te  pis ton-f low motion the veloci t ies  of the external  field and cen te r s  of ine r t i a  of the pis tons are  
equal. We study the s tabi l i ty  of this motion for smal l  per turba t ions  of the dis tance between the pistons.  

The sys tem in quest ion (Fig. 1) consis ts  of two plane flows of l imited width (the l imit ing case of an e lement  of 
cy l indr ica l  flows with width equal to the arc along the c i r cumference  of the channel). The flows are  separated from one 
another by a wall of thickness A and a re  shifted re la t ive  to one another by the dis tance T (the pistons are  shown 
hatched). The dis tance between the centers  of iner t ia  of neighboring pistons in each of the flows is 2~-. A d i rec t  cu r ren t  
flows through the pis tons along the y-ax is  (in the upper pis tons the c u r r e n t s  a re  d i rec ted  into the paper,  in the lower 
they are  di rected out of the paper).  The external  magnetic field, created by three-phase  a l te rnat ing  cu r r en t  windings 
(stators)  located at the edges of fe r romagnet ic  media  bounding the flows from above and below, has the form of a 
t rave l ing  wave of length 2T and t rave ls  in the x direct ion,  as do the flows. 
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Fig. 1 

1. In o rder  to obtain s imple  d imens ion less  re la t ions ,  we assume the common boundaries  between the gas and the 
piston to be plane,  and the gas is cons idered  to be an elas t ic  medium. The f i r s t  assumpt ion  is formal ly  valid if the 
re laxat ion  t ime of the dis turbed motions of the piston is considerably  less  than the cha rac te r i s t i c  t ime for breakdown 
of the contact surface because of Rayle igh-Taylor  instabil i ty;  the second assumption means  that the p rocesses  in the 
gas are  adiabatic and is known to be valid for p rocesses  such as compress ion  and expansion in a sound wave. 

Let us examine the motion of the center  piston in Fig. 1. The equation of motion has the form (we use the SI 

sys tem of units) 

du 
M T E  = ( P _  - -  P+) q - -  F , - - F =  . (1.1) 

Here M is the mass  of a piston of length l (dimension along the y-axis) ;  u is the piston velocity in the labora tory  
coordinate sys tem x, y, z; P -  and P+ are ,  respect ively ,  the p r e s s u r e s  to the left and right  of the piston; q is the 
piston a rea  in the yz plane; F1 is the e lec t romagnet ic  force; F2 is the f r ic t ion  force between the piston and the channel  

wall. 

The equation of motion of the gas with account for the assumpt ion on adiabatici ty of the p rocesses  in the gas in 
conventional  notation has the form 
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dv Op 
P - y F = - - g r a d p ,  -b -F+d iv (pv )=0 ,  ----P=const . (1.2) p v 

W e  s e t  

o dO 
P_ = P_~ + p_, F1 = Fl  ~ q-/1, u = u + -y/- , 

P + = P + ~  F ~ = F ~ ~  Ug = u" +-if/- . (1.3) 

Here  we have introduced a s imp l i f i ca t ionby the  assumpt ion  that the gas motion is one-d imens iona l  (v = iug). The 
basis  for  this is the fact  that the contr ibut ion made by the acoust ic  p r e s s u r e  p- ,  p+, as shown la te r ,  is insignificant.  
Fo r  this same r ea son  we ignore  the change of the quantity q in (1.4). 

In (1.3) the f i r s t  t e r m s  r e l a t e  to the s t eady-s t a t e  motion of  the piston and the second t e r m s  a re  the per turbat ions  
of the cor respond ing  quanti t ies;  ,~(t) is the piston d i sp lacement  r e l a t i ve  to i ts  equi l ibr ium posi t ion (by equi l ibr ium we 
mean the piston posit ion in its s t eady- s t a t e  motion). Thus,  ,~(t) defines the piston posit ion in the X, y, z coordinate  
sys t em fixed with the piston in its s t eady-s t a t e  motion (Fig. 2), 0(t, X) is the average  (in the d i rec ted  sense) 
d i sp lacement  of the gas molecu le s  in the same  X, y, z coordinate  sys tem.  

j x 
-L g ~  L 

Fig. 2 

Substituting (1.3) into (1.1) and (1.2), we obtain 

d ~  , , 
M - y ~  : (p_ - -  p+) q - - f i  - - / , ,  

0~0 020 
Ot 2 a o ~ - ~  = 0 . 

Her e 

o• ( o o )  
a o =  ]/-7-~o, T =  % , P - = - - Y P - ~  "~X- , -L '  

Let us evaluate  the individual quant i t ies  appearing in (1.4). 

~ o / 0 O \  
p+ = - 'w+ ( - ~ ) ~  �9 

( i .4 )  

( i . 5 )  

To de t e rmine  the e l ec t romagne t i c  fo rce  pe r tu rba t i on f l  we examine the equations of the e lec t rodynamie  sys tem 
(Fig. 1) for smal l  s l ips  of the flows r e l a t ive  to the externaI  magnet ic  field; here  

 do( -7) s - -  o) dt ~ = ' 

where  w is the c i r c u l a r  f requency of the voltage applied to the s ta tor  winding. 

We r ep l ace  the sys tem of two piston flows (Fig. 1) by a s ing le -component  flow with the e l e c t r i c a l  conductivity a 
and the cu r r en t  Jv 

. . 2~z 
~ 63 ~- ~lSln T cos 0kV, iv = ]1 C0S ~ .  

8 c , [  2~A ~ A \  8 
~0 ~ ~-~p, ~1 --~-) = - ~  ~eOS ~ + COS ]1 = --~- C~jp. 

Here  ap is the e l e c t r i c a l  conductivi ty of the piston, jp is the cu r r en t  densi ty  in the piston due to external  
source ,  and cl is the coeff ic ient  of the f i r s t  t e r m  of the F o u r i e r  s e r i e s  for  the e l e c t r i c a l  conductivi ty curve.  

The equations of e lec t rodynamies  can be wri t ten as 

0A 
AA - -  ~ 0 ~ -  = - -  ~0]~ , 

O A +_'Ah = ~= F,n, sin ( (ost -~- a x  - -  (h) • Fm, sin (ax - -  (p~) 
Oz 
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3 3 2Wph 

- -  U m exp [ - -  j~ = o~ Oi + L,  T i  + 1~ (~ + L j ) .  

h .o . 

- -v  

Here A is the y-component  of the vector  potential; ~0 is the magnetic  permeabi l i ty  of vacuum; Wph is the number  
of turns  in the s ta tor  winding phase; p is the number  of s ta tor  field waves in the channel  length; U m is the amplitude of 
the s ta tor  voltage; 11 and 12 a re ,  respect ively ,  the stator  cu r r en t  components due to the voltage U m exp ( - j~  and 
the cu r r en t  in  the liquid; go 1 and q~ are  the phase angles between I 1 and 12 for t = 0; L s is the stator  winding leakage 
inductance; j~ is the imaginary  unit. 

We set  

A = ~' ~ 2r ~/r ~,h c h  ~,zFm, exp  [ ~  1 "~ (o~s t  + o~x ~ q~a)] + 
~ sh ~.h 

_~. t to/, --ctx)] --~-- exp [ f  (~-  - - ~ c h ~ z F m ,  e x p [ - - ] ~  

(1.6) 

Then 

0s hS--tLoZ-~7-=/(t, x, z), 
.o . , 2 r  ~/2 ~ h  ] (t, x, z) = 1 cosbt0 (r ~ ~o) ~ s-Z~KZK- r ~.z F,n, exp [--  ]~ ((~st + ax - -  (~1)] �9 

OS = o  for z = + + h  
Oz 

(1.7) 

The quantity S sa t i s f ies  the per iodici ty  condition with respec t  to t and x. Therefore ,  bear ing  in mind (1.7) and 

the s t ruc tu re  o f f ( t , x ,  z), we set 

- -  C O S T [ b , n = c o s ( ~ t + n a x ) + C m n  sin (~t+nztx)] ,  (1.8) 
0 0 

where  am0, bran, and Cmn a r e  complex  numbers .  Equation (1.8) s a t i s f i e s  the comple t eness  condit ion and the re fo re  i t  

mus t  converge  in the mean.  

Let us ut i l ize the idea of the Galerk in  method. It is easy to see that 

0 --': --limb 

where ga is any of the coordinate functions f rom (1.8). Thus,  for the coefficients am0, bmn, Cmn we obtain a sys tem 
of homogeneous a lgebra ic  equa t i ons .  This indicates  that these coefficients will be zero. Consequently,  S = 0. 

where 

The actual magnitude of the vector  potential  is given by the imaginary  par t  of (1.6), i . e . ,  it is 

A = Fret [a (z) sin (o~st -~ ~x - -  r - -  b (z) cos (o~st + ax - -  q~1)] + 
~oh _ ~ 2 c h  1/2 ah ch azF~., sin (:r - -  %) ~- ~ cos ax 

a (z)  = qz cos vz ch rz - -  q~ sin vz sh rz 2ch 1A ~.h 

b ( z ) = q z s i n v z s h r z + q 2 c o s v z c h r z ,  q l + ] ~  ~,sh~h 

(1.9) 

We fur ther  set (as) 2 << 1, h << T and obtain 
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_ _  2pwl~ll0O g ( 1 .10 )  It= U,~ Is . . . . . . . .  Sl, ( h = - - 5 ~ ,  % = T '  

where  

3.2/ + ch ah 
Xd = o)L, + -'--7- l(2w~)~ ~ t sh :th 

We find the e l ec t romagne t i c  force  acting on the piston f rom the re la t ion  

i 
_., = <1> = I I 

--.t --'Jib 

OA 8A 
i = Z o - . ~ i - - - j ~ ,  B==-~b- ~ . 

Here  (.f) is the average  value of the e lec t romagne t ic  force  density.  

We have 

dO = 3  il Um 2wr 5 
Ft  = Fm sin f~ + C,~ + D---dy , F,~ - -~-- -~  l~o ---~- -x- Ll  , 

Urn ~ ~ : t  I "4- ch :th 8 2Ll 
C = Fm:~ cos be, D = 3w~ x~ ] ~ (vp)' s h  : l h  h " (1.11) 

In (1.11) the f i r s t  t e r m  cor responds  to the s teady-s ta te  reg ime .  Thus,  the per turbat ion  of the e l ec t romagne t i c  

force  is 

,/t = C~ + D-~- . (1.12) 

The f r ic t ion fo rce  on the wall is 

pu ~ L 
Ft = ~--~--~- q , 

where  ~ is the f r ic t ion coeff icient ,  found f rom known formulas  as a function of the Reynolds number.  Hence we obtain 
for  the per turba t ion  of the f r ic t ion  fo rce  

dO o L /2 = Z -~/-, x = ~pu ~-- q .  ( 1 . 1 3 )  

Thus,  for  the formulat ion of (1.4) it r ema ins  to find the per turbat ions  p_ and p+. These  quanti t ies  depend on the 
per turbed  motion of the gas. T h e r e f o r e  we must  examine (1.5). 

Among the solutions which fo rmal ly  sa t is fy  (1.5) we take that which will  coincide with the solution of (1.4) for 
X = • L. Taking (1.12) and (1.13) into account,  we can assume that this solution will  have e i ther  per iodic  or aper iodic  
nature for instantaneous per turbat ions .  T h e r e f o r e  we wri te  the solution of (1.5) in one of the following fo rms :  

+ / ~ , ( a o t ~ X + L ~ ) e x p [ ~ ( a o t - } - X + L O ]  (t (1.14) 

( i : - - ,  + ;  L : - - L §  

0 i =Oii-]-02i ~ Ali expVkl(aot--L ao X - -L i ) ]  + A~exp[~-~-o(a~ X - -  Li) } 
(1. 

(A l i=  coast, A:i = cons0. (1.15) 

Here  and he rea f t e r  the subscr ip t s  ( - )  and (+) denote, r e spec t ive ly ,  the reg ions  to the left  and r ight  of the piston. 

Let  us examine  (1.14). It impl ies  that 
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O0~i 
O X  ]-L i 001i = ~i -Y-2- I-ri ' 

and fur ther  

~176 ~+z~ ~176 L OX L~= (l--~,~)a o Ot ( 1 . 1 6 )  

Here k i = const  and in the general  case k_ ~ M-. Since 

Oil_L i ~ 0 , 

where ~ is the piston d isp lacement ,  we obtain 

( p _ - -  p+)  q = R w ,  ~ L~-i-=-~_ - - -  ~-~.---V + ' ( 1 . 1 7 )  

Thus (1.4) can be wri t ten as 

M d~'b r ,  dO 7 K  - -  ~ o  -~- + C ~  = o (De = R - -  D - -  X ) .  (1.18) 

Hence we obtain 

,.(1 _~ 7 ' 0.) 2M , 4 M C  ~ De S . (1.19) 

Here 71 and w are  the inc remen t  and the frequency of the piston osci l la t ions  for t rans ien t  per turbat ions .  

In (1.17) the quantity ki is the rat io of the amplitude of the le f t - t rave l ing  wave to the amplitude of the r igh t -  
t rave l ing  wave at the edges of the piston being examined. Consequently the quantity )'i mus t  depend on the per turbed 
motion of the neighboring (on the left and right) pistons.  Two cases are  formal ly  possible:  the neighboring pistons are  
s ta t ionary,  i . e . ,  they have no d isp lacement  re la t ive  to the s teady-s ta te  motion; the neighboring pistons per fo rm the 
same motion as that being examined but with a different  amplitude. The second case is of in teres t .  For  this c a se ,  
we find f rom the conditions that the osci l la t ions  of the neighboring pis tons match the sonic osci l la t ion of the gas 

~ i  + - -  1 

~'i ----- exp (4- 27'l i / no) - -  2~t cos r i / ao exp (:J: ~'Xl i / ao) -}- 8t~ 

~ ch ~l~ r176 -- 0 
W - -  c o s  W - (1.20) 

Here the upper sign applies to i = +, the lower sign applies to i = - .  Thus,  for given dis tances  l -  and l+ between 
the pistons (Fig. 1) we can obtain from (1.17), (1o19), and (1.20) all  the necessa ry  quanti t ies  charac te r iz ing  the 
osc i l la tory  motions of the piston for t rans ien t  perturbat ions�9 Numer ica l  calculat ions of (1.17), (1.19), and (1.20) showed 
that the contr ibut ion of the acoustic p r e s s u r e  R d 0 ~ t  is small .  For  example,  for C = 3.98.105 J �9 m -2, D e = 2.103 J .  
�9 s e c . m  -z, pc_= 250.10  ~ N . m  -z, P~_= 2 3 8 . 1 0 6 N . m  -2, M =  91kg,  a 0 = 4 4 0 m . s e c  -1, l -  = l + = 0 . 7 5 m ,  q =  0 .0375m 2 
we have R = 40 kg. sec �9 m- l .  Thus the acoustic p r e s s u r e  mus t  play a secondary role.  

Aperiodic motions (1.15) of the piston a re  possible  if De 2 > 4MC. In this case neighboring pistons per form the 
same motions and the value of R is found from the formula  

po~___q 
R = ( P - ~  + ) a o  ' 

Simple es t imates  show that the role  of the quantity R in this case is more  prominent  than for the case of piston 
osci l la t ions .  

In (1.18) forces having the nature  of constantly acting per turba t ions  are  not taken into account. Let us examine 
the basic facts with which the exis tence of such forces is associated.  
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The pistons which compr ise  the flow are  coupled with one another.  This  coupling is provided by the gaseous 
layers  located between the pis tons (acoustic p r e s s u r e  on the pistons) and by the e lect romagnet ic  field. 

As shown previously,  the acoustic p r e s s u r e  depends on the stat ic p r e s s u r e s  P !  and P~_ acting on the pistons in 
the s teady-s ta te  flow motion, and in the case of osc i l la tory  motions also on the d is tances  l -  and l+ between the pistons.  
To ensu re  normal  operat ion of the device the channel  expands sl ightly along the length. Therefore ,  in the process  of 
pis ton motion along the channel these quant i t ies  change continuously. However, this change cannot have a s ta t ionary 
nature .  This  is associated with the fact that the piston d imens ion  along x is s t i l l  s ignif icant  (on the order  of the length 
of the s ta tor  field half-wave),  while the piston dwell t ime in the channel  is shor t  (on the order  of hundredths of a 
second) and may be less  than the re laxat ion t ime of the mechanical  t rans i t iona l  p rocesses  (for the numer ica l  values 
presented above this t ime is on the order  of 0.1 sec). Thus the change of the static gas p r e s su r e ,  associated with 
useful piston work, mus t  also be accompanied by the format ion of acoustic waves and p re s su re s .  It is c lear  that this 
p r e s s u r e  will have the na ture  of constant ly acting per turbat ions  and will be a function of t, ~, and d~/dt. 

The piston magnetic  mutua l - induct ion  field depends on the piston d imens ions  and dis tances  between them. As the 
piston t ravels  along the channel,  as a r e su l t  of channel  expansion these quanti t ies  change continuously,  which leads to 
a change of the mutua l - induct ion  field. Moreover ,  the changes of this field and of the piston se l f - induct ion field are 
associa ted with the finite channel  length. Thus,  among the forces  acting on the piston there mus t  appear additional 
e lec t romagnet ic  forces  which have the na ture  of constant ly acting per turbat ions  which depend on t, J ,  and dJ/dt .  

To account for  the constant ly  acting per turba t ions  of both acoustic and e lec t romagnet ic  origin,  we mus t  introduce 
into (1.18) the t e r m f ( t ,  ~, d0/d0 and write 

M d~O - -  dO . ~ _  / d O  (1.21) 

Analyt ic  descr ip t ion  of the func t ionf ( t ,  ,~, dO/dt) is hardly possible.  However this s i tuat ion is not of s ignif icant  
impor tance ,  s ince in the following we need know only the upper l imi ts  of this function. In this formulat ion (1.21) is 
valid for any of the pistons; therefore we t e rm it the equation of the per turbed piston-flow motion.  

2. Let us examine the problem of the s tabi l i ty  of the piston-flow motion. 

We replace  (1.21) by a normal  sys tem of different ial  equations 

dyl dy2 
d--V = allY1 ~ a12y2 ~ /1 (t, Yl, Y2), ~ = a~lyl , (2.1) 

where 

d0 D~ C I (2.2) 
Y l = ~ - ,  Y2=~, a l l = ~ - ,  a i 2 = - - - ~ - ,  a ~ i = | ,  ] 1 - -  M . 

The unper turbed motion (:/1 = Y2 = 0) and the per turbed motion, due to the action of the ins tantaneous 
per turba t ions  for t = 0, are  de te rmined  from (2.1) for f l  = 0. For  f l  # 0 and nonzero ini t ia l  condit ions this same 
sys tem yields the per turbed motion in the p resence  of instantaneous and constant ly acting per turbat ions .  

Let us find the s tabi l i ty  c r i t e r i on  for the motion (Yl = Y2 = 0) on the t ime interval  [0, T] (T is the piston stay 
t ime in the channel) re la t ive  to the quant i t ies  

{gl0, Y20}, A(t), {gl('),g2(t)} , (2.3) 

which are ,  respect ive ly ,  the given upper bounds of the absolute values of the ini t ia l  per turba t ions ,  the per turb ing  
force,  and the subsequent  per turbat ions .  We use the second Lyapunov method [1-3] to solve this problem. 

In accordance with this method we obtain the sufficient s tabi l i ty  c r i t e r i a  on the basis  of the upper es t imate  of 
the Cauehy integral  of the pe r tu rbed-mot ion  equations (2.1), which requ i res  the construct ion of a special  posit ive 
definite function V of Yl, Y2 and study of this function together with (2.1) 

We set 
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V ~-- A expy (t) -~ (Alayl  ~ -4- A ~ y ~  ~ Jr 2Al~y~y~) exp ~/(t), Al~ --~ A~l , (2.4) 

w he r e  Y(t) i s  a func t ion  which is  r e a l  on the i n t e r v a l  [0, T] and we i m m e d i a t e l y  a s s u m e  that ~(t) > 0. We sha l l  see  l a t e r  
tha t  this  r e q u i r e m e n t  does  no t  m a k e  the o the r  e s t i m a t e s  inval id .  The  quan t i t i e s  Atl ,  A22, A~2 m u s t  sa t i s fy  the equa t ion  

OV " ~ 2 

(allYi -~" alkyd) ~ l  -~ a ~ l Y l ~ y  .. = (ul~l --}- u~y~)~exp T(t), 

w h e r e  u 1 and u 2 a r e  a r b i t r a r y  nega t ive  t ime  funct ions .  

Se t t ing  i m m e d i a t e l y  

U 1 ~ ~ - -  U 2 
a12 

a~lu~ u2 = ( t an 
A l l  - -  , !AB . 

a n a i ~  ~ A12 - -  ~ A , ~  \all 2al-~.a21"} ( 2 . 5 )  

we find 

In o r d e r  that  (2.4) be  a pos i t ive  de f in i t e  funct ion  i t  is  su f f ic ien t  that  the Hurwi tz  cond i t ions  be sa t i s f i ed  for  u 2 < 0, 

- -al~ar  ~ O, - - a  n > O . 

The f i r s t  condi t ion ,  r e d u c i n g  to C > 0 in a c c o r d a n c e  with (2.2), i s  s a t i s f i ed  au tomat ica l ly ;  the second y ie lds  

De < 0 .  (2.6) 

By v i r t u e  of (2.1) the tota l  d e r i v a t i v e  of the funct ion  V for  f l  = 0 is  

V ---- B exp ~/(t) ~ (Bllgi ~ -Jr- B~Y~ 2 + 2Bi2gig~) exp ~ (t), B12----Bzi . (2.7) 

He re  

B~i = ;(A~t - -  a~---2"~ u2, B ~  : "~A~z + us B ~  = ;(A~, . (2.8) 

In ob ta in ing  (2.7) and (2.8) we a s s u m e d  that u 2 = const .  The  d e r i v a t i v e  V wil l  be a nega t ive  def in i te  funct ion  if 

i Bi~ Bil B~ ~ 0 Bli ~ O, B.n 

Hence  

IDel > T > 0 ,  {i" M~ ~ 2  jDel ~ ( l - -  M~ M \ - - ~ /  ~ \  2---j~el)> O. (2.9) 

If cond i t ions  (2.6) and (2.9) a r e  sa t i s f i ed ,  then the upper  e s t i m a t e s  Xk(0, t,~0) of the abso lu te  va lue  lYk(t)l of the 

Cauchy  i n t e g r a l  of (2.1) for  f l  = 0, 

(where  Yk(t), ~k(t) a r e ,  r e s p e c t i v e l y ,  
f r o m  the f o r m u l a  [4] 

He re  

lyk(t) l~<Xh(O, t, Oo)~<ga( t )  (k=-t,2) (2.10) 

the Cauehy i n t e g r a l s  for  the in i t i a l  cond i t i ons  Yo and Y0(Yo < Y0)) c a n  be  found 

X~ = (A (go) Mk ~'/2 -X~-] exp (p (t, 0) (k ---- t.2) . (2.11) 

A (go) = Alrgl02 -~ A~y2o ~ -{- 2Al*glog~o , 

An ~ Al iA~2 - -  Ax~ ~, M I  -~  A~2, M~ ~ A , I  , 
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(p (t, 0) ---- t/, [y (0) - -  u (t)] . (2.12) 

Thus we obtain 

I D e I  _ _ ~ a , l - ' / ,  i . 
Xi = [(Yl0' "~ Algr -~- ~ I - -  ~ 'l'mt) YtoY~o) a'~2] exp 

I D+l  _ _ "~ t l  ~ / ,  X2 : [(gto' + atg202 + ~ Y,oY,o) ~-~ J exp ( - - ' "  y,~t) , 

A -  DJ C D~ C 
1 - "~-gr + - g ,  ~ = Wife + M -  �9 

(2.13) 

(2.14) 

Here  Ym is the max imum value of +~, found f rom condit ion (2.10). 

So f a r  we have a s sumed  t h a t f l  = 0. F o r  f l  ~ 0, i . e . ,  in the p r e s e n c e  of cons tant ly  act ing pe r tu rb ing  fo rces ,  the 
c r i t e r i a  (2.6) and (2.9) r e m a i n  valid.  The only thing that needs be done is to account for  the contr ibut ion  o f f l  in the 
fo rmulas  for  the upper  e s t i m a t e s  of the Cauchy in t eg ra l s  of (2.10) and wr i t e  in p lace  of (2.10) 

Ya(0, t, g 0 ) ~ a ( t )  (k----l ,  2), (2.15) 

where  7k(t) is  the Cauchy in teg ra l  of (2.1) f o r f l  ~ 0 and Y0. The quanti ty Yk can be found f rom the fo rmula  [4] 

2 t 

Y~=X~+~IZ~')(t,T)L(~)d~ (k=i,  2) (2.16) 
l ~ l  0 

(2.17) 

Here  X k a r e  given by (2.13) and (2.14), M k and A n a r e  ca lcu la ted  f rom (2.12). We have 

y t  X l + . 2  [ i _ e x p (  i �9 (i)- , 
= E Tmt)lzl /1 

~m 

I �9 (x)- 

~i" = a'('a~ ']~, ~'~ = a7 '1, . (2.i8) 

Here~ = const is the upper limit of the funetionf1(t, ~, d,~/dt). 

Thus the suff ic ient  c r i t e r i a  for the s t ab i l i ty  of p i s ton- f low mot ion in a t r ave l ing  magnet ic  f ield on the in te rva l  
[0, T] r e l a t i v e  to the p r e spec i f i ed  quant i t ies  (2.3) a r e  given by the condi t ions (2.6), (2.9), and (2.15), in which the upper  
e s t i m a t e s  a r e  found f rom (2.13), (2.14), and (2.18). 

The fo rmulas  (2.13), (2.14), and (2.18) for  the upper  e s t i m a t e s  of the Cauchy in tegra l s  of the p e r t u r b e d - m o t i o n  
equation for  ins tantaneous  pe r tu rba t ions  and in the p r e s e n c e  of cons tant ly  ac t ing pe r tu rb ing  fo rces  contain the s ame  
quant i t ies  ( see  (2.11), (2.17). These  s ame  quant i t ies  define the Lyapunov function V. The re fo re ,  an idea  of the qual i ty  
of these  fo rmu la s  and how success fu l  the function V is cons t ruc ted  can be obtained,  for  example ,  by compar ing  the 
r e s u l t s  given by (2.13) and (2.14) with the exact  solut ion of (2.1) for  ins tantaneous  per tu rba t ions .  This  can be done in 
the p rob l em in quest ion here .  

F i g u r e  3 shows the r e s u l t s  of ca lcu la t ions  of Yl and i ts  e s t i m a t e s  using (2.13) for  the following condit ions:  D e = 
= 2. l0  g J . s e e . m  -2, C = 3.98- 105 J . m  -2, M =  9 1 k g ,  p o = 2 5 0 . 1 0 5 N . m  -2, P~_= 238 .10  ~ N . m  -2, a 0 = 4 4 0 m . s e e  -1 , 
l -  = l + =  0 . 7 5 m ,  q =  0 .0375m 2, y 1 = -  10 .34sec- t~w = 65.32 sec -1, Ym = 1 8 s e e  -1, 7 1 0 = m ' s e c  -1, 720= 0 .05m.  The 
quant i t ies  3,1 and w were  ca lcu la ted  using (1.17), (1.19) and (1.20), and Ym was de t e rmined  f rom condit ions (2.9). 

This  c o m p a r i s o n  d e m o n s t r a t e s  the va l id i ty  of the suff ic ient  c r i t e r i a  obtained above for  the s tab i l i ty  of p i s ton-  
flow mot ion in a t r ave l ing  magnet ic  f ield.  
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